일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 옵티마이저
- 프로그래머스
- object detection
- 코드구현
- Python
- 인공지능
- 논문구현
- 딥러닝
- Computer Vision
- 파이토치
- cnn
- transformer
- Semantic Segmentation
- programmers
- Convolution
- pytorch
- Segmentation
- optimizer
- 알고리즘
- Ai
- 코딩테스트
- ViT
- 머신러닝
- 논문
- Paper Review
- 논문리뷰
- 논문 리뷰
- opencv
- Self-supervised
- 파이썬
- Today
- Total
목록분류 전체보기 (116)
Attention please
https://school.programmers.co.kr/learn/courses/30/lessons/42577 프로그래머스 코드 중심의 개발자 채용. 스택 기반의 포지션 매칭. 프로그래머스의 개발자 맞춤형 프로필을 등록하고, 나와 기술 궁합이 잘 맞는 기업들을 매칭 받으세요. programmers.co.kr 문제 설명 전화번호부에 적힌 전화번호 중, 한 번호가 다른 번호의 접두어인 경우가 있는지 확인하려 합니다. 전화번호가 다음과 같을 경우, 구조대 전화번호는 영석이의 전화번호의 접두사입니다. 구조대 : 119 박준영 : 97 674 223 지영석 : 11 9552 4421 전화번호부에 적힌 전화번호를 담은 배열 phone_book 이 solution 함수의 매개변수로 주어질 때, 어떤 번호가 다른 ..
What Experiment? 영역 분할(segmentation) 딥러닝 모델은 의료영상에서 많이 쓰이며 또 발전해왔다. 의료영상은 질환에 따라 영상의 종류와 feature가 전부 다르며, 딥러닝 모델 역시 영역 분할을 위해 개발된 다양한 모델들이 존재한다. 하지만 새로운 의료영상이 주어졌을 때 어떤 딥러닝 모델이 적합할지 선택할 때 어려움을 겪을 수 있다. 이러한 문제를 해결하고자 여러 종류의 의료영상에 대해 다양한 딥러닝 모델로 실험을 하여 성능을 비교하였다. Dataset 의료영상에서 병변 영역을 검출할 때 가장 중요한 것은 의료영상의 종류이다. 어떤 종류의 영상인지에 따라 feature가 다르기 때문에 이는 모델 성능에 직접적으로 영향을 미친다. 이미 다양한 의료영상들이 나와있으며 이번 실험을 위..
2022.12.10 - [딥러닝/CNN] - [딥러닝] Max Pooling의 원리, 합성곱층과 max pooling층의 차이 Max Pooling 2022.12.09 - [딥러닝/CNN] - 텐서의 합성곱 텐서의 합성곱 2022.12.09 - [딥러닝/CNN] - 이미지와 텐서, 전치(transpose) 이미지와 텐서, 전치(transpose) CNN(합성곱 신경망) 앞으로 다룰 CNN - Convolution Neural Network smcho1201.tistory.com 지난 글에서는 CNN을 구성하는 요소 중 2가지, convolution층과 max pooling층의 역할과 차이점에 대해 알아보았다. 이번 글에서는 4차원 텐서를 다루어야하는 CNN인 만큼 들어가는 코드가 복잡해지고 시간비용이 늘..
2022.12.09 - [딥러닝/CNN] - 텐서의 합성곱 텐서의 합성곱 2022.12.09 - [딥러닝/CNN] - 이미지와 텐서, 전치(transpose) 이미지와 텐서, 전치(transpose) CNN(합성곱 신경망) 앞으로 다룰 CNN - Convolution Neural Network 은 컴퓨터 비전 즉 이미지를 처리하는데 특화되어있다 smcho1201.tistory.com 합성곱 신경망(CNN)을 구성하는 요소는 총 3가지가 있다. Affine - ReLu - Affine - softmax - CrossEntropy 합성곱층(Convolution) max pooling 저번 글에서는 위 3가지 요소중 합성곱층에 대해 알아보았으며, 이번 글에서는 max pooling에 대해 알아보자. Max P..
2022.12.09 - [딥러닝/CNN] - 이미지와 텐서, 전치(transpose) 이미지와 텐서, 전치(transpose) CNN(합성곱 신경망) 앞으로 다룰 CNN - Convolution Neural Network 은 컴퓨터 비전 즉 이미지를 처리하는데 특화되어있다. 즉, 이미지를 학습을 한다는 것인데 컴퓨터에 학습시키기 위해서는 데이터를 수 smcho1201.tistory.com 저번 글에서는 학습을 할 이미지가 텐서로 구성됨을 보였으며, 학습을 위한 전처리 방법 중 하나인 전치(transpose)에 대해 알아보았다. 이번 글에서는 CNN의 핵심이라 할 수 있는 합성곱이 어떻게 이루어지는지 알아보자. 합성곱(Convolution)이란 무엇인가? 앞에서 다루었던 Affine층으로 이루어진 full..
CNN(합성곱 신경망) 앞으로 다룰 CNN - Convolution Neural Network 은 컴퓨터 비전 즉 이미지를 처리하는데 특화되어있다. 즉, 이미지를 학습을 한다는 것인데 컴퓨터에 학습시키기 위해서는 데이터를 수치화할 필요가 있다. 글과 같이 자연어를 처리할 때는 언어를 벡터로 바꾸는 등 전처리 과정이 필요하지만 이미지나 영상은 애초에 텐서의 형태를 가지고 있다. 예를 들어 흑백 사진은 행렬 즉 2차원 텐서이며, 여러 이미지들을 배치로 묶게 되면 3차원 텐서가 된다. 컬러 이미지같은 경우는 R, G, B 3개의 행렬이 합쳐져 있는 형태로 3차원 텐서이며, 컬러 이미지 여러장을 배치로 묶게 되면 4차원 텐서가 된다. 2차원 텐서까지는 평면에 표현하기 어렵지 않다. 하지만 3차원 이상부터는 입체..