일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 머신러닝
- Ai
- 논문
- 프로그래머스
- cnn
- 코딩테스트
- 딥러닝
- 옵티마이저
- pytorch
- 논문 리뷰
- 논문구현
- Segmentation
- transformer
- programmers
- Self-supervised
- object detection
- Semantic Segmentation
- Paper Review
- 논문리뷰
- ViT
- 파이썬
- 파이토치
- optimizer
- opencv
- 알고리즘
- Convolution
- Python
- 인공지능
- Computer Vision
- 코드구현
- Today
- Total
목록논문 리뷰 (37)
Attention please
이번에 리뷰할 논문은 Real-world Anomaly Detection in Surveillance Videos(2019) 입니다. 사실 이번에 처음으로 Anomaly Detection 분야를 건드리게 되었는데 computer vision 중에서도 video 분야에서 사용되는 기법들을 찾다가 해당 논문을 읽게 되었습니다. 아무래도 이상치 탐지 분야에 대해 처음 접하는만큼 세부적인 내용에 대해서도 detail하게 잡고 넘어갈 생각입니다. 그래도 최대한 핵심적인 부분만 골라보도록 하겠습니다. 해당 논문은 paperwithcode 사이트의 Abnormal Event Detection In Video 에서 Most implemented 에 해당하는 논문으로 후에 구현을 위해 선정하게 되었습니다. https:/..
이번에 리뷰할 논문은 "You Only Look Once: Unified, Real-Time Object Detection" 이다. One-stage vs Two-stage Object Detection 모델은 크게 one-stage model 과 two-stage model 로 구분된다. two-stage model 은 대표적으로 R-CNN 기반 모델들을 예로 들 수 있다. 즉, Localization과 Classification을 각각 순차적으로 수행하는 모델을 의미한다. 이는 정확도를 올리는 것에는 유리하지만 시간이 오래걸린다는 단점이 있다. R-CNN에 대한 자세한 설명은 아래 링크에서 자세히 다루고 있다. 2022.12.30 - [논문 리뷰/object detection] - [논문 리뷰] R-..
이번에 리뷰할 논문은 "Rich feature hierarchies for accurate object detection and semantic segmentation" 이다. R-CNN은 object detection 모델 중 2-stage detector의 시초가 되는 모델이다. R-CNN 모델은 Regions with CNN의 약자로 region proposals 와 CNN이 결합된 구조이다. 이전의 Object Detection 분야의 최고의 성능을 나타낸 기법은 mAP 수치가 30% 정도였지만 R-CNN은 이 수치를 훨씬 뛰어넘는 53.3%를 달성하였다. 2022.12.30 - [딥러닝/CNN] - AP(Average Precision) & mAP(mean Average Precision)의 개..
이번에 리뷰할 논문은 "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" 이다. 본 논문에서 제안한 EfficientNet은 ImageNet 데이터셋의 classification task에 SOTA에 달성하였다. 본 논문의 부제목을 살펴보면 "CNN 모델들을 모델 scaling하는 방법에 대해 다시 생각해보자" 이다. 즉, 모델을 scaling하는 방법들에 대해 실험을 하여 보다 효율적인 성능을 내도록 하는 것이 본 논문의 목적인데, 이 효율적이라 함은 적은 파라미터의 수로 좋은 성능을 낸다는 것에 있다. 다음 figure와 같이 모델의 파라미터 수와 정확도를 비교한 표이다. 다른 모델들은 파라미터의 수가 많아지는 것에 비..
이번에 리뷰할 논문은 "Squeeze-and-Excitation Networks" 이다. SENet은 2017년 ImageNet 대회에서 우승을 차지한 모델이다. top-error가 2.251%로 사람의 error rate 인 5%보다 적은 수치를 달성하기도 했다. 논문의 제목을 읽어보면 Squeeze(짜내다)와 Excitation(활성화) 한 network라고 한다. 본 논문에서는 기존의 어떤 모델들과도 적용할 수 있는 SE block이라는 것을 제안했는데 이때 이 블럭의 과정이 squeeze하고 excitation을 한다고 하여 SE block이라고 한다. SE block은 기존 모델인 VGGNet, GoogLeNe, ResNet 에 첨가되어 성능이 향상되는 동시에 하이퍼 파라미터는 많이 늘지 않아서..
이번에 리뷰할 논문은 "Aggregated Residual Transformations for Deep Neural Networks " 이다. CNN의 성능을 높이기 위해 가장 먼저 드는 생각은 깊고(dimension) 넓게(scale) 만드는 것이다. 하지만 본 논문에서는 저 두가지가 아닌 cardinality를 키우는 것에 초점을 맞추었다. cardinality : the size of the set of transformations (똑같은 형태의 블록 개수) Split - Transform - Merge 즉, 같은 block을 반복하여 구축하는 것이 모델의 깊이와 넓이를 크게 가져가는 것보다 정확도에 더 큰 영향을 미친다는 것인데 이는 Inception module과 비슷한 형태를 가진다. res..