일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 딥러닝
- 코드구현
- pytorch
- 파이썬
- 논문리뷰
- opencv
- 옵티마이저
- object detection
- 파이토치
- 알고리즘
- 코딩테스트
- cnn
- Segmentation
- transformer
- 논문구현
- 프로그래머스
- Semantic Segmentation
- 인공지능
- Computer Vision
- programmers
- 논문
- 머신러닝
- Convolution
- ViT
- Ai
- optimizer
- Python
- Paper Review
- Self-supervised
- 논문 리뷰
- Today
- Total
목록딥러닝 (22)
Attention please
다양한 convolution 기법들 original convolution dilated convolution separable & depthwise & pointwise convolution depthwise separable convolution 이번 글에서는 Transposed Convolution에 대해 알아보자. 이 convolution 기법은 Deconvolution 이라는 이름으로 많이 쓰이지만 이는 잘못된 표현이다. Deconvolution은 이전의 convolution 작업을 되돌려 output을 원본 input으로 되돌리는 것이다. Transposed Convolution 역시 같은 spatial dimension을 만들어낸다는 점에서 Deconvolution과 유사하지만 Transpos..
다양한 convolution 기법들 original convolution Transposed convolution separable & depthwise & pointwise convolution depthwise separable convolution CNN 모델은 input data 와 kernel을 convolution하여 feature를 추출한다. 일반적인 Convolution 기법은 다음과 같다. 하지만 object detection이나 object segmentation과 같은 경우 객체 주변이나 주위의 환경에 대해 판단하기 위해 contextual information을 확보하는 것이 중요한데 이를 위해서는 더 넓은 receptive field를 고려해야한다. 하지만 기존의 Convoluti..
2022.12.10 - [딥러닝/CNN] - [딥러닝] Max Pooling의 원리, 합성곱층과 max pooling층의 차이 Max Pooling 2022.12.09 - [딥러닝/CNN] - 텐서의 합성곱 텐서의 합성곱 2022.12.09 - [딥러닝/CNN] - 이미지와 텐서, 전치(transpose) 이미지와 텐서, 전치(transpose) CNN(합성곱 신경망) 앞으로 다룰 CNN - Convolution Neural Network smcho1201.tistory.com 지난 글에서는 CNN을 구성하는 요소 중 2가지, convolution층과 max pooling층의 역할과 차이점에 대해 알아보았다. 이번 글에서는 4차원 텐서를 다루어야하는 CNN인 만큼 들어가는 코드가 복잡해지고 시간비용이 늘..
2022.12.09 - [딥러닝/CNN] - 텐서의 합성곱 텐서의 합성곱 2022.12.09 - [딥러닝/CNN] - 이미지와 텐서, 전치(transpose) 이미지와 텐서, 전치(transpose) CNN(합성곱 신경망) 앞으로 다룰 CNN - Convolution Neural Network 은 컴퓨터 비전 즉 이미지를 처리하는데 특화되어있다 smcho1201.tistory.com 합성곱 신경망(CNN)을 구성하는 요소는 총 3가지가 있다. Affine - ReLu - Affine - softmax - CrossEntropy 합성곱층(Convolution) max pooling 저번 글에서는 위 3가지 요소중 합성곱층에 대해 알아보았으며, 이번 글에서는 max pooling에 대해 알아보자. Max P..
2022.12.09 - [딥러닝/CNN] - 이미지와 텐서, 전치(transpose) 이미지와 텐서, 전치(transpose) CNN(합성곱 신경망) 앞으로 다룰 CNN - Convolution Neural Network 은 컴퓨터 비전 즉 이미지를 처리하는데 특화되어있다. 즉, 이미지를 학습을 한다는 것인데 컴퓨터에 학습시키기 위해서는 데이터를 수 smcho1201.tistory.com 저번 글에서는 학습을 할 이미지가 텐서로 구성됨을 보였으며, 학습을 위한 전처리 방법 중 하나인 전치(transpose)에 대해 알아보았다. 이번 글에서는 CNN의 핵심이라 할 수 있는 합성곱이 어떻게 이루어지는지 알아보자. 합성곱(Convolution)이란 무엇인가? 앞에서 다루었던 Affine층으로 이루어진 full..
CNN(합성곱 신경망) 앞으로 다룰 CNN - Convolution Neural Network 은 컴퓨터 비전 즉 이미지를 처리하는데 특화되어있다. 즉, 이미지를 학습을 한다는 것인데 컴퓨터에 학습시키기 위해서는 데이터를 수치화할 필요가 있다. 글과 같이 자연어를 처리할 때는 언어를 벡터로 바꾸는 등 전처리 과정이 필요하지만 이미지나 영상은 애초에 텐서의 형태를 가지고 있다. 예를 들어 흑백 사진은 행렬 즉 2차원 텐서이며, 여러 이미지들을 배치로 묶게 되면 3차원 텐서가 된다. 컬러 이미지같은 경우는 R, G, B 3개의 행렬이 합쳐져 있는 형태로 3차원 텐서이며, 컬러 이미지 여러장을 배치로 묶게 되면 4차원 텐서가 된다. 2차원 텐서까지는 평면에 표현하기 어렵지 않다. 하지만 3차원 이상부터는 입체..